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Abstract

The article demonstrates the importance of convex combination centers and set
barycenters in creating Jensen’s inequalities. Center and barycenter properties
are used to the formulation of Jensen’s inequality for functions that are convex

at one side of its domain.
1. Introduction

Throughout this paper, I < R will be an interval with the non-

empty interior I°. Main support for the work will be the famous

Jensen’s inequalities.

The discrete or basic form (see [3]) says that every convex function

f : I —» R satisfies the inequality
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n n
f(zpixiJ < Zpif(xi), (1.1)
=1 =1

. . n
for all convex combinations Zi—l p;x; from 1.

The continuous or integral form (see [4]) says that every convex

p-integrable function f : I — R satisfies the inequality

f[ﬁA) [ Atdu@) <L 0ao. 1.2

for all p-measurable subsets A < I with u(A) > 0.

2. Convex Combination Centers

The main result in this section is Theorem 2.2 for right convex and
right concave functions in the discrete case without restrictions on

coefficients.
If x; € I are points, and p; € [0,1] are coefficients such that
n n oy .

Zi:1 p; =1, then the sum Zi:1 p;x; = c belongs to I, and it is called the

convex combination from I. The number c itself is called the center of the

convex combination. For a continuous function f : I — R, the convex
combination Z?zl p;f(x;) belongs to f(I). A convex hull of a set X will be
denoted by coX.

The following theorem is related to convex combinations with

common center:

Theorem A. Let x1, ..., x, € I be points such that x; ¢ co{xy, ..., x, }

for i=k+1,...,n, where 1<k<n-1. Let aq,...,0a, € R be non-

. k
negative numbers such that 0 < Zizlai =a<f= Z?zloci.
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If one of the equalities

k n n
1 1 1
aZaixi = E o;x; = B— o Z o;X;, (2.1)
i=1 =1 i1=k+1
is valid, then the double inequality
1% 1< 1 <
azaif(xi) < Ezaif(xi) o Z o f(x;), (2.2)
1=1 =1 i=k+1
holds for every convex function f : I — R.
Theorem A was realized in [7, Proposition 2].
Corollary 2.1. Let xq, ..., x,, € I be points such that x; ¢ co{xy, ..., x}}
for i=k+1,...,n, where 1<k<n-1. Let oq,...,0a, € R be non-

n

. k
negative numbers such that 0 < Zi:lai = Zi:k+1ai.

If the equality

k
Zaixi = Z o;X;, (23)

i=1 i1=k+1

is valid, then the inequality

k n
D i) < D oif(x), (2.4)
i=1 i=k+1

holds for every convex function f : I — R.

The next theorem (weighted right convex function theorem) was
presented and proved in [2] as the main result.

Theorem B (WRCF-theorem). Let f(u) be a function defined on a
real interval I and convex for u > s € I, and let py, po, ..., p, be positive

real numbers such that

p = min{p;, py, ..., Pp}, DL+ Py +..+p, =1
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The inequality
pif(x1) + paf(x2) + ...+ puf(x,) 2 f(P127 + Paxg + ...+ Ppxy ),
holds for all xq, xg, ..., x, € I satisfying p1xq + poXg + ... + ppx, = s if
and only if
pf(x)+ (@ - p)f(y) = f(s),
forall x, y € I suchthat x <s<y and px +(1 - p)y = s.

In a similar way, WLCF-theorem (weighted left convex function
theorem) and WHCF-theorem (weighted half convex function theorem)
were listed in [2]. The main deficiency of these three theorems are
convex combinations containing pre-determined coefficients. Especially,

the binomial convex combinations include the fixed coefficient

p = min{p;, pg, ..., Py }-

Two subintervals of I specified by the number s € I O will be labelled
with

M8 = ftellt>s) and I ={tellt<s).

We formulate the Jensen inequality for right convex and concave

functions.

Theorem 2.2 (Discrete case of right convexity and concavity). Let

f: I —> R bea function.

If f is convex on I;ig for some s € I°, then the inequality

f{ipixz) < Zn:pif(xi), (2.5)
i-1 i-1

holds for all convex combinations from I satisfying Z?zlpixi >s if and

only if the inequality
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f(px + qy) < pf(x) + qf (v), (2.6)

holds for all binomial convex combinations from I satisfying px + qy = s.

If f is concave on I;'® for some s e I°, then the reverse inequalities

are valid in (2.5) and (2.6).

Proof. Let us prove the sufficiency for the case of right convexity.

The proof will be done by induction on the integer n.

The base of induction. Take the binomial convex combination from

I such that px + qy > s. If px + qy = s, then the inequality in (2.5) for

n = 2 holds by the assumption in (2.6). If px + gy > s and x, y I;ig,

then we apply the discrete form of Jensen’s inequality to get the

inequality in (2.5) for n = 2. Therefore, suppose px +qy > s with x < s

and p > 0. Let the point ¥ be defined by the equation
pPX +qgx = 8.
Then we have s < px +qy and x < y, and so s, ¥ & co{px + qy, x}. We
want to apply Corollary 2.1. First, we solve the equation
ai(px + qy) + agx = a3s + oy, 2.7

with the unknowns a4, ag, a3, and o4, under the condition aq + oy =
o3 + oy4. Taking o7 =1, we get a9 = ¢, ag =1, and a, = ¢. Since the

condition in (2.3) is satisfied, it applies
f(px + qy) + af (x) < f(s) + af (v), (2.8)

by the inequality in (2.4). Since s = px + gk, it follows f(s) < pf(x)

+qf(x) by assumption. After ordering the inequality in (2.8), we get

f(px + qy) < pf(x) + qf (y).
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The step of induction. Let n > 2 be a fixed integer. Suppose that

the inequality in (2.5) is true for all corresponding n-membered convex

n+l

combinations. Let Z _ bixi 28 be a convex combination from I, and

without loss of generality, suppose all p; > 0. If all x; > s, then the

inequality in (2.5) follows from Jensen’s inequality for convex functions.

Otherwise, if x,,; < s, then

I >
E . lxl > s.
i=1 1[n+

Using the induction base and premise, it follows:

n+l n
p.
f[;pixij = f[pn+1xn+1 + (1= ppa1 );m xij

=1

< Ppiaf(xpi1) + (1= Ppit )f [Zl = ot xi]

< Pt f (1) + (1= Do >Zl — 1)

n+1

= Zpif(xi),
=)

which ends the proof of the theorem. |

Theorem for left convex and left concave functions can be formulated
on the model of Theorem 2.2. We end this section with the formulation of

the theorem for half convex and half concave functions.

Theorem 2.3 (Discrete case of half convexity and concavity). Let

f: I — R beafunction.

If f is convex on I;dg or Iief for some s e I°, then the inequality
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n n

f[zpixi] < Zpif(xi), (2.9)
E) E)

holds for all convex combinations from I satisfying Z?zlpixi = s if and
only if the inequality
f(px +qy) < pf(x) + af (¥), (2.10)

holds for all binomial convex combinations from I satisfying px + qy = s.

If f is concave on I*® or Iief for some s e I°, then the reverse

inequalities are valid in (2.9) and (2.10).
3. Set Barycenters

The main result in this section is Theorem 3.3 for right convex and

right concave functions in the integral case.

Integral generalizations of the concept of arithmetic mean in the
finite measure spaces are the barycenter of measurable set, and the
integral arithmetic mean of integrable function. The basic result on the
integral arithmetic means is just the integral form of Jensen’s inequality.
See [6, pages 44-45].

For a given finite measure p on I will be assumed that all

subintervals of I, and therefore the points, are p-measurable.

Let A < I be a p-measurable set with p(A) > 0, and 14 be the
identity function on A. If the function 1,4 is p-integrable, then the
u-barycenter of A is defined by

B(A, ) = ﬁhtdu(t). 3.1)

If a function f: 1 — R is p-integrable on A, then the p-arithmetic
mean of f on A is defined by



36 ZLATKO PAVIC
.
MU, A W) = [ . (3.2)

Note that M(14, A, n) = B(A, n). If A is the interval, then its
u-barycenter B(A, u) belongs to A. If A is the interval and f is

continuous on A, then its p-arithmetic mean on A belongs to f(A).

Theorem C. Let pn be a finite measure on I. Let Bc I be a
u-measurable set and A < B be a bounded interval such that

0 < u(4) < u(B).
If one of the equalities
B(4, w) = B(B, p) = B(B\A, ), (3.3)
is valid, then the double inequality
M(f, A, n) < M(f, B, n) < M(f, B\A, n), (3.4)
holds for every p-integrable convex function f : I — R.
The version of Theorem C for bounded closed intervals A = [a, b]
and B was proved in [7, Proposition 1].

A measure p on [ is said to be continuous, if p({t}) = 0 for every point

t € I (according to the definition in the book [9, page 149]). In the rest of

the paper, we will use the continuous finite measure p on I, which is
positive on the intervals, that is, which satisfies u(A) > 0 for every non-

degenerate interval A < 1.

If u is a continuous finite measure on I that is positive on the

intervals, then the function

1
~ (Ilef ) jllef td].,l(t) = B(Ialcef’ “), (3.5)
ML x
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is strictly increasing continuous on I°. The related function with I;ig
instead of I chef has the same properties. We can also use any interval
A < I for the function definition in (3.5) in which case the resulting

function is observed on A°.

Lemma 3.1. Let p be a continuous finite measure on I that is positive

on the intervals.

If a eI’ is a point, then the decreasing series (A,), of bounded

intervals A, < I exists so that

B(A,,u)=a and ﬂAn = {a}.

n=1

Proof. Take a point a € 1 0. Let us show the basic and the iterative
step.
In the first step, we choose the points x;, y; € I such that

x; < a < y;, and determine the p-barycenter of the interval [x;, y;]:

1
@ =) gy MO

If a; = a, then we take A; =[x, y;]. If a@; > a, then we observe the
function g : [a, y;] > R defined by

1

&) = =D

tdu(t) — a.
'[[x]_?x] ( )

Since g is continuous, g(a) <0 and g(y;) > 0, there must be a point
y; €< a, y; > such that g(y;) = 0. In this case, we can take A; =[xy, ¥; ].
If a; < a, then we increase x; until we obtain one of the previous two

cases.
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In the next step, if 4; = [x;, y; ], we take the points

X1 +a a + N
Xo = and = ,
2 B} Y2 B
and repeat the previous procedure to determine A,. O

Lemma 3.2. Let u be a continuous finite measure on I that is positive
on the intervals. Let B < I be an interval with the u-barycenter

b = B(B, n).

If a € B s a point different from b, then the interval A c B exists

so that the binomial convex combination

_n4) (B\NA)_
b= ';(B)a + B B (3.6)

holds with a = B(A, n) and @ = B(B\ A, p).

Proof. In the case a < b, we use the function

glx) = Lo AME) — a, (3.7

w0l

uw(By") I By
on the domain B°. The function g 1is strictly increasing continuous on
BO, and has the unique zero-point x,. Taking A = B}C%f, the equality in

(3.6) is evident. Also, B\ A = B;;g \ {xo} = BUS.

In the case a > b, we use the function g with the sets B;ig instead of

the sets Bl and take A = B"%. In this case, B\ A = B/ \ {x,} < Bl
X0 xo

x
g

Theorem 3.3 (Integral case of right convexity and concavity). Let n

be a continuous finite measure on I that is positive on the intervals, and

f: I —> R bea p-integrable function.
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If f is convex on Igig for some s e I°, then the inequality

{1l ] 0] < s ot (38

holds for all intervals B < I satisfying
LJ. tdu(t) > s, (3.9)
wB)JB

if and only if the inequality

f(ﬁ jAtdua)] <o [ o, (3.10)

holds for all bounded intervals A < I satisfying
LJ. tdu(t) = s. (3.11)
nA)Ja

If f is concave on I;'® for some s e I°, then the reverse inequalities

are valid in (3.8) and (3.10).

Proof. Let us prove the sufficiency for the case of right convexity.

Suppose B is an interval from I such that its u-barycenter
b= LJ‘ tdu(t) > s.
wB)J B

If s ¢ B in which case B c I gig, the inequality in (3.8) follows from

the integral form of Jensen’s inequality for convex functions.

Suppose s e BY. If s = b, then using Lemma 3.1, we can determine
the bounded interval A — B with the p-barycenter s. Using the

assumption in (3.10), and the inequality in (3.4) under the condition
B(A, n) = B(B, n), we get
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f(ﬁ [ Btdu(t)j - f(ﬁ jAtdua)] < s ] oo

1
<5 [ rodue.

If s < b, then using Lemma 3.2, we can determine the interval S < B so

that the binomial convex combination

b= ;‘Ejsgg s+ ”(f(;)s) 5, (3.12)

holds with s = B(S, p) and 5§ = B(B\ S, p). Since s, 5 € I''¢, we can
apply the discrete form of Jensen’s inequality to the equality in (3.12),
and get

f(b) < % fls) + % £(®). (3.19)

Since B\ S c B!'8 c I8 is also valid, we may apply the integral form

of Jensen’s inequality to the barycenter s, and have the estimate for

f(5):

— 1 1
f(s) = f(m -[B\Stdu(t)] < ij\Sf(t)du(t)'

Now, we include Lemma 3.1 to determine the bounded interval A < S

with the u-barycenter s. Using the assumption in (3.10), and the
inequality in (3.4) under the condition B(A, p) = B(S, n), we obtain the

estimate for f(s):

fs) = f[@ [ Atdu(t)j <] foaw

< ﬁ j @),
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After ordering the inequality in (3.13), it follows:

1 1 1
! [m J Btd”(tﬂ < m_[sf(t)du(t) B | RRIOET0
- ] SO0,

and the proof is done. O

Using the previous theorem, we can express the theorem for left
convex and left concave functions in the integral case. Combining these
cases, we get the theorem for half convex and half concave functions in

the integral case.

Theorem 3.4 (Integral case of half convexity and concavity). Let p be

a continuous finite measure on I that is positive on the intervals, and

f: I —> R bea p-integrable function.

If f is convex on I;"ig or Iief for some s € IO, then the inequality

f[ﬁ [ Btdu(wj < oo, (3.14)

holds for all intervals B < I satisfying
LJ tdu(t) = s, (3.15)
nB)J B

if and only if the inequality

ot ] o) < s | v (3.16)

holds for all bounded intervals A < I satisfying

ﬁA) IAtdu(t) = (3.17)
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If f is concave on I:'*® or I;ef for some s e I°, then the reverse

inequalities are valid in (3.14) and (3.16).
4. Applications to Quasi-Arithmetic Means
In the applications of convexity to quasi-arithmetic means, we use

strictly monotone continuous functions ¢, » : I - R such that y is

convex with respect to ¢(yp is g-convex), that is, f = po ¢ ! is convex

(according to the terminology in the book [8, Definition 1.19]). A similar
notation is used for concavity. Very general forms of discrete and integral
quasi-arithmetic means, and its refinements, were studied in [5]. A good

approach to means can be seen in [1].

4.1. Discrete case

Let Z?ﬂ p;x; be a convex combination from I. The discrete ¢-quasi-

arithmetic mean of the points x; with the coefficients p; is the number
n
-1
Mo(xi; pi) = 07| D piolx;) |, (4.1)
1=1

which belongs to I, because the convex combination 2?21 p;¢(x;) belongs

to o(I). If ¢ is the identity function on I, that is, ¢ = 1;, then the

discrete 1j-quasi-arithmetic mean is just the convex combination

Z;Pixi-

The following is the theorem for right convexity and right concavity

for quasi-arithmetic means in the discrete case:

Theorem 4.1 (Discrete case of right convexity and concavity for quasi-

arithmetic means). Let ¢,y : I — R be strictly monotone continuous

functions, and J = o¢(I).
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If v is either ¢-convex on Jéi(i) for some o(s) € J? and increasing on I

or @-concave on J ;i(i) and decreasing on I, then the inequality
M (x5 pi) < My(x;; py), (4.2)

holds for all convex combinations from J satisfying Z?:l p;o(x;) = o(s) if
and only if the inequality
M(p(x’ y’ p7 Q) < MW(x9 y’ pa Q)7 (43)

holds for all binomial convex combinations from o satisfying po(x) + qo(y)

= o(s).

If v is either @-convex on Jéi(f;’) for some ¢(s) € J O and decreasing on I

or @-concave on J:';l(s) and increasing on I, then the reverse inequalities
are valid in (4.2) and (4.3).
Proof. We prove the case in which the function y is ¢-convex on the

interval J(T)i(‘(i) and increasing on the interval I. Put f = p o L.

First, if we apply DRCF-theorem to the function f :J — R convex

on the interval J ié), then we have

v
f(fpiwi)] <3 pifo(),
i=1 i=1

holds for all convex combinations from JJ satisfying Z?:l p;0(x;) = o(s) if

and only if
f(po(x) + go(y)) < pf(e(x)) + af (o(y)),

holds for all binomial convex combinations from o satisfying po(x) + qo(y)

= o(s).
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Second, after applying the increasing function ! on the above

inequalities, it follows:

M (x;5 p;) = <P_1[Zpi®(xi )] < w_l[zpiw(xi)] = My(x;5 p;),
i=1 i=1

holds for all binomial convex combinations from </ satisfying

Z?:l p;o(x;) > o(s) if and only if

Mo(x, 3 p, @) = 07 (po(x) + q0(¥)) < v (po(x) + go(y)) = My(x, ¥; p. @),
holds for all x, y € I satisfying po(x) + qo(y) = ¢(s). |

4.2. Integral case

Let A < I be a p-measurable set with p(A) > 0, and ¢ : I - R be
a strictly monotone continuous function that is p-integrable on A. The
integral ¢-quasi-arithmetic mean of the set A with respect to the

measure p is the point

N e )] @

If A is the interval, then its ¢-quasi-arithmetic mean M(p(A, u) belongs

to A because the point o(t)du(t) belongs to ¢(A). If A is not

ol
na)la
connected, then M, (A, ) may be outside of A. If ¢ =17, then the
integral 1;-quasi-arithmetic mean of A is just the barycenter B(A, p).

Theorem for right convexity and right concavity for quasi-arithmetic

means in the integral case as follows:

Theorem 4.2 (Integral case of right convexity and concavity for

quasi-arithmetic means). Let n be a continuous finite measure on I that is
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positive on the intervals. Let ¢,y : 1 — R be p-integrable strictly

monotone continuous functions, and J = ¢(I).

If v is either ¢-convex on Jéié) for some o(s) € J and increasing on I

or @-concave on J ig) and decreasing on I, then the inequality

e
M(p(B> u) < MW(B’ l"t)a (45)

holds for all intervals B < I satisfying
; J
— t)du(t) > o(s), (4.6)
(B) 5 00)du(®) = ols)

if and only if the inequality

M(D(A’ M) < Mw(A’ “)> (47)

holds for all bounded intervals A < I satisfying
—7 [ o0)du) = o(s) @.8)
nA)Ja

If v is either @-convex on Jéié) for some ¢(s) € J O and decreasing on I

or @-concave on J(T)l(i) and increasing on I, then the reverse inequalities

are valid in (4.5) and (4.7).
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