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Abstract 

The article demonstrates the importance of convex combination centers and set 
barycenters in creating Jensen’s inequalities. Center and barycenter properties 
are used to the formulation of Jensen’s inequality for functions that are convex 
at one side of its domain. 

1. Introduction 

Throughout this paper, R⊆I  will be an interval with the non-

empty interior .0I  Main support for the work will be the famous 
Jensen’s inequalities. 

The discrete or basic form (see [3]) says that every convex function 
R→If :  satisfies the inequality 
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for all convex combinations ii
n
i xp∑ =1  from I. 

The continuous or integral form (see [4]) says that every convex 
integrable-µ  function R→If :  satisfies the inequality 
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µ ∫∫   (1.2) 

for all measurable-µ  subsets IA ⊆  with ( ) .0>µ A  

2. Convex Combination Centers 

The main result in this section is Theorem 2.2 for right convex and 
right concave functions in the discrete case without restrictions on 
coefficients. 

If Ixi ∈  are points, and [ ]1,0∈ip  are coefficients such that 

,11 =∑ = i
n
i p  then the sum cxp ii

n
i =∑ =1  belongs to I, and it is called the 

convex combination from I. The number c itself is called the center of the 
convex combination. For a continuous function ,: R→If  the convex 

combination ( )ii
n
i xfp∑ =1  belongs to ( ).If  A convex hull of a set X will be 

denoted by coX. 

The following theorem is related to convex combinations with 
common center: 

Theorem A. Let Ixx n ∈,,1 …  be points such that { }kxxxi ,,co 1 …∈/  

for ,,,1 ni …+= k  where .11 −≤≤ nk  Let R∈αα n,,1 …  be non-

negative numbers such that .0 11 i
n
iii α=β<α=α< ∑∑ ==

k  
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If one of the equalities 
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is valid, then the double inequality 
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holds for every convex function .: R→If  

Theorem A was realized in [7, Proposition 2]. 

Corollary 2.1. Let Ixx n ∈,,1 …  be points such that { }kxxxi ,,co 1 …∈/  

for ,,,1 ni …+= k  where .11 −≤≤ nk  Let R∈αα n,,1 …  be non-

negative numbers such that .0 11 i
n
iii α=α< ∑∑ +== k

k  

If the equality 
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 (2.3) 

is valid, then the inequality 
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k
  (2.4) 

holds for every convex function .: R→If  

The next theorem (weighted right convex function theorem) was 
presented and proved in [2] as the main result. 

Theorem B (WRCF-theorem). Let ( )uf  be a function defined on a 

real interval I and convex for ,Isu ∈≥  and let nppp ,,, 21 …  be positive 

real numbers such that 

{ } .1,,,,min 2121 =+++= nn ppppppp ……  
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The inequality 

( ) ( ) ( ) ( ),22112211 nnnn xpxpxpfxfpxfpxfp +++≥+++ ……  

holds for all Ixxx n ∈,,, 21 …  satisfying sxpxpxp nn ≥+++ …2211  if 

and only if 

( ) ( ) ( ) ( ),1 sfyfpxpf ≥−+  

for all Iyx ∈,  such that ysx ≤≤  and ( ) .1 syppx =−+  

In a similar way, WLCF-theorem (weighted left convex function 
theorem) and WHCF-theorem (weighted half convex function theorem) 
were listed in [2]. The main deficiency of these three theorems are  
convex combinations containing pre-determined coefficients. Especially, 
the binomial convex combinations include the fixed coefficient 

{ }.,,,min 21 npppp …=  

Two subintervals of I specified by the number 0Is ∈  will be labelled 
with 

{ } { }.and lefrig stItIstItI ss ≤∈=≥∈=  

We formulate the Jensen inequality for right convex and concave 
functions. 

Theorem 2.2 (Discrete case of right convexity and concavity). Let 
R→If :  be a function. 

If f is convex on rig
sI  for some ,0Is ∈  then the inequality 
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 (2.5) 

holds for all convex combinations from I satisfying sxp ii
n
i ≥∑ =1  if and 

only if the inequality 
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( ) ( ) ( ),yqfxpfqypxf +≤+   (2.6) 

holds for all binomial convex combinations from I satisfying .sqypx =+  

If f is concave on rig
sI  for some ,0Is ∈  then the reverse inequalities 

are valid in (2.5) and (2.6). 

Proof. Let us prove the sufficiency for the case of right convexity. 
The proof will be done by induction on the integer n. 

The base of induction. Take the binomial convex combination from 
I such that .sqypx ≥+  If ,sqypx =+  then the inequality in (2.5) for 

2=n  holds by the assumption in (2.6). If sqypx >+  and ,, rig
sIyx ∈  

then we apply the discrete form of Jensen’s inequality to get the 
inequality in (2.5) for .2=n  Therefore, suppose sqypx >+  with sx <  

and .0>p  Let the point x  be defined by the equation 

.sxqpx =+  

Then we have qypxs +<  and ,yx <  and so { }.,co, xqypxys +∈/  We 

want to apply Corollary 2.1. First, we solve the equation 

( ) ,4321 ysxqypx α+α=α++α   (2.7) 

with the unknowns ,,, 321 ααα  and ,4α  under the condition =α+α 21  

.43 α+α  Taking ,11 =α  we get ,1, 32 =α=α q  and .4 q=α  Since the 

condition in (2.3) is satisfied, it applies 

( ) ( ) ( ) ( ),yqfsfxqfqypxf +≤++   (2.8) 

by the inequality in (2.4). Since ,xqpxs +=  it follows ( ) ( )xpfsf ≤  

( )xqf+  by assumption. After ordering the inequality in (2.8), we get 

( ) ( ) ( ).yqfxpfqypxf +≤+  
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The step of induction. Let 2≥n  be a fixed integer. Suppose that 
the inequality in (2.5) is true for all corresponding n-membered convex 

combinations. Let sxp ii
n
i ≥∑ +
=

1
1  be a convex combination from I, and 

without loss of generality, suppose all .0>ip  If all ,sxi ≥  then the 

inequality in (2.5) follows from Jensen’s inequality for convex functions. 
Otherwise, if ,1 sxn ≤+  then 

.1 11
sxp

p
i

n
i

n

i
≥

− +=
∑  

Using the induction base and premise, it follows: 
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which ends the proof of the theorem.  

Theorem for left convex and left concave functions can be formulated 
on the model of Theorem 2.2. We end this section with the formulation of 
the theorem for half convex and half concave functions. 

Theorem 2.3 (Discrete case of half convexity and concavity). Let 
R→If :  be a function. 

If f is convex on rig
sI  or lef

sI  for some ,0Is ∈  then the inequality 
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holds for all convex combinations from I satisfying sxp ii
n
i =∑ =1  if and 

only if the inequality 

( ) ( ) ( ),yqfxpfqypxf +≤+   (2.10) 

holds for all binomial convex combinations from I satisfying .sqypx =+  

If f is concave on rig
sI  or lef

sI  for some ,0Is ∈  then the reverse 

inequalities are valid in (2.9) and (2.10). 

3. Set Barycenters 

The main result in this section is Theorem 3.3 for right convex and 
right concave functions in the integral case. 

Integral generalizations of the concept of arithmetic mean in the 
finite measure spaces are the barycenter of measurable set, and the 
integral arithmetic mean of integrable function. The basic result on the 
integral arithmetic means is just the integral form of Jensen’s inequality. 
See [6, pages 44-45]. 

For a given finite measure µ  on I will be assumed that all 

subintervals of I, and therefore the points, are .measurable-µ  

Let IA ⊆  be a measurable-µ  set with ( ) ,0>µ A  and A1  be the 

identity function on A. If the function A1  is ,integrable-µ  then the 

barycenter-µ  of A is defined by 

( ) ( ) ( ).1, ttdAA
A

µ
µ

=µ ∫B  (3.1) 

If a function R→If :  is integrable-µ  on A, then the arithmetic-µ  

mean of f on A is defined by 
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( ) ( ) ( ) ( ).1,, tdtfAAf
A

µ
µ

=µ ∫M  (3.2) 

Note that ( ) ( ).,,,1 µ=µ AAA BM  If A is the interval, then its 

barycenter-µ  ( )µ,AB  belongs to A. If A is the interval and f is 

continuous on A, then its arithmetic-µ  mean on A belongs to ( ).Af  

Theorem C. Let µ  be a finite measure on I. Let IB ⊆  be a 

measurable-µ  set and BA ⊂  be a bounded interval such that 

( ) ( ).0 BA µ<µ<   

If one of the equalities 

( ) ( ) ( ),,\,, µ=µ=µ ABBA BBB   (3.3) 

is valid, then the double inequality 

( ) ( ) ( ),,\,,,,, µ≤µ≤µ ABfBfAf MMM   (3.4) 

holds for every egrableint-µ  convex function .: R→If  

The version of Theorem C for bounded closed intervals [ ]baA ,=  

and B was proved in [7, Proposition 1]. 

A measure µ  on I is said to be continuous, if { }( ) 0=µ t  for every point 

It ∈  (according to the definition in the book [9, page 149]). In the rest of 
the paper, we will use the continuous finite measure µ  on I, which is 

positive on the intervals, that is, which satisfies ( ) 0>µ A  for every non-

degenerate interval .IA ⊆  

If µ  is a continuous finite measure on I that is positive on the 

intervals, then the function 

( )
( ) ( ),,1 lef

lef lef µ=µ
µ ∫ x

Ix
Ittd

I
x

x
B6  (3.5) 
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is strictly increasing continuous on .0I  The related function with rig
xI  

instead of lef
xI  has the same properties. We can also use any interval 

IA ⊆  for the function definition in (3.5) in which case the resulting 

function is observed on .0A  

Lemma 3.1. Let µ  be a continuous finite measure on I that is positive 

on the intervals. 

If 0Ia ∈  is a point, then the decreasing series ( )nnA  of bounded 

intervals IAn ⊂  exists so that 

( ) { }.,
1

aAandaA n
n

n ==µ
∞

=
∩B  

Proof. Take a point .0Ia ∈  Let us show the basic and the iterative 
step. 

In the first step, we choose the points Iyx ∈11,  such that 

,11 yax <<  and determine the barycenter-µ  of the interval [ ]:, 11 yx  

[ ]( ) [ ]
( ).,

1
11,11

1 ttdyxa
yx

µ
µ

= ∫  

If ,1 aa =  then we take [ ]., 111 yxA =  If ,1 aa >  then we observe the 

function [ ] R→1,: yag  defined by 

( ) [ ]( ) [ ]
( ) .,

1
,1 1

attdxxxg
xx

−µ
µ

= ∫  

Since g is continuous, ( ) 0<ag  and ( ) ,01 >yg  there must be a point 

>∈< 11 , yay  such that ( ) .01 =yg  In this case, we can take [ ]., 111 yxA =  

If ,1 aa <  then we increase 1x  until we obtain one of the previous two 

cases. 
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In the next step, if [ ],, 111 yxA =  we take the points 

,2and2
1

2
1

2
yayaxx +

=
+

=  

and repeat the previous procedure to determine .2A   

Lemma 3.2. Let µ  be a continuous finite measure on I that is positive 

on the intervals. Let IB ⊆  be an interval with the barycenter-µ  

( )., µ= Bb B   

If 0Ba ∈  is a point different from b, then the interval BA ⊂  exists 
so that the binomial convex combination 

( )
( )

( )
( ) ,\ aB

ABaB
Ab

µ
µ+

µ
µ=  (3.6) 

holds with ( )µ= ,Aa B  and ( ).,\ µ= ABa B  

Proof. In the case ,ba <  we use the function 

( )
( )

( ) ,1
leflef attd

B
xg

xBx
−µ

µ
= ∫  (3.7) 

on the domain .0B  The function g is strictly increasing continuous on 

,0B  and has the unique zero-point .0x  Taking ,lef
0xBA =  the equality in 

(3.6) is evident. Also, { } .\\ rig
0

rig
0 ax BxBAB ⊂=  

In the case ,ba >  we use the function g with the sets rig
xB  instead of 

the sets ,lef
xB  and take .rig

0xBA =  In this case, { } .\\ lef
0

lef
0 ax BxBAB ⊂=  

 

Theorem 3.3 (Integral case of right convexity and concavity). Let µ  

be a continuous finite measure on I that is positive on the intervals, and 
R→If :  be a ntegrablei-µ  function. 
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If f is convex on rig
sI  for some ,0Is ∈  then the inequality 

( ) ( ) ( ) ( ) ( ),11 tdtfBttdBf
BB

µ
µ

≤






 µ
µ ∫∫  (3.8) 

holds for all intervals IB ⊆  satisfying 

( ) ( ) ,1 sttdB B
≥µ

µ ∫  (3.9) 

if and only if the inequality 

( ) ( ) ( ) ( ) ( ),11 tdtfAttdAf
AA

µ
µ

≤






 µ
µ ∫∫  (3.10) 

holds for all bounded intervals IA ⊆  satisfying 

( ) ( ) .1 sttdA A
=µ

µ ∫  (3.11) 

If f is concave on rig
sI  for some ,0Is ∈  then the reverse inequalities 

are valid in (3.8) and (3.10). 

Proof. Let us prove the sufficiency for the case of right convexity. 
Suppose B is an interval from I such that its barycenter-µ  

( ) ( ) .1 sttdBb
B

≥µ
µ

= ∫  

If 0Bs ∈/  in which case ,rig
sIB ⊆  the inequality in (3.8) follows from 

the integral form of Jensen’s inequality for convex functions. 

Suppose .0Bs ∈  If ,bs =  then using Lemma 3.1, we can determine 

the bounded interval BA ⊂  with the barycenter-µ  s. Using the 

assumption in (3.10), and the inequality in (3.4) under the condition 
( ) ( ),,, µ=µ BA BB  we get 
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( ) ( ) ( ) ( ) ( ) ( ) ( )tdtfAttdAfttdBf
AAB

µ
µ

≤






 µ
µ

=






 µ
µ ∫∫∫ 111  

( ) ( ) ( ).1 tdtfB B
µ

µ
≤ ∫  

If ,bs <  then using Lemma 3.2, we can determine the interval BS ⊂  so 

that the binomial convex combination 

( )
( )

( )
( ) ,\ sB

SBsB
Sb

µ
µ+

µ
µ=  (3.12) 

holds with ( )µ= ,Ss B  and ( ).,\ µ= SBs B  Since ,, rig
sIss ∈  we can 

apply the discrete form of Jensen’s inequality to the equality in (3.12), 
and get 

( ) ( )
( ) ( ) ( )

( ) ( ).\ sfB
SBsfB

Sbf
µ

µ+
µ
µ≤  (3.13) 

Since rigrig\ ss IBSB ⊆⊂  is also valid, we may apply the integral form 

of Jensen’s inequality to the barycenter ,s  and have the estimate for 

( ):sf  

( ) ( ) ( ) ( ) ( ) ( ).\
1

\
1

\\
tdtfSBttdSBfsf

SBSB
µ

µ
≤







 µ
µ

= ∫∫  

Now, we include Lemma 3.1 to determine the bounded interval SA ⊂  
with the barycenter-µ  s. Using the assumption in (3.10), and the 

inequality in (3.4) under the condition ( ) ( ),,, µ=µ SA BB  we obtain the 

estimate for ( ):sf  

( ) ( ) ( ) ( ) ( ) ( )tdtfAttdAfsf
AA

µ
µ

≤






 µ
µ

= ∫∫ 11  

( ) ( ) ( ).1 tdtfS S
µ

µ
≤ ∫  
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After ordering the inequality in (3.13), it follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tdtfBtdtfBttdBf
SBSB

µ
µ

+µ
µ

≤






 µ
µ ∫∫∫ \

111  

( ) ( ) ( ),1 tdtfB S
µ

µ
= ∫  

and the proof is done.   

Using the previous theorem, we can express the theorem for left 
convex and left concave functions in the integral case. Combining these 
cases, we get the theorem for half convex and half concave functions in 
the integral case. 

Theorem 3.4 (Integral case of half convexity and concavity). Let µ  be 

a continuous finite measure on I that is positive on the intervals, and 
R→If :  be a ntegrablei-µ  function. 

If f is convex on rig
sI  or lef

sI  for some ,0Is ∈  then the inequality 

( ) ( ) ( ) ( ) ( ),11 tdtfBttdBf
BB

µ
µ

≤






 µ
µ ∫∫  (3.14) 

holds for all intervals IB ⊆  satisfying 

( ) ( ) ,1 sttdB B
=µ

µ ∫  (3.15) 

if and only if the inequality 

( ) ( ) ( ) ( ) ( ),11 tdtfAttdAf
AA

µ
µ

≤






 µ
µ ∫∫  (3.16) 

holds for all bounded intervals IA ⊆  satisfying 

( ) ( ) .1 sttdA A
=µ

µ ∫  (3.17) 
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If f is concave on rig
sI  or lef

sI  for some ,0Is ∈  then the reverse 

inequalities are valid in (3.14) and (3.16). 

4. Applications to Quasi-Arithmetic Means 

In the applications of convexity to quasi-arithmetic means, we use 
strictly monotone continuous functions R→/ϕ Iv :,  such that v/  is 

convex with respect to ( ),convex-is ϕ/ϕ v  that is, 1−ϕ/= Dvf  is convex 

(according to the terminology in the book [8, Definition 1.19]). A similar 
notation is used for concavity. Very general forms of discrete and integral 
quasi-arithmetic means, and its refinements, were studied in [5]. A good 
approach to means can be seen in [1]. 

4.1. Discrete case 

Let ii
n
i xp∑ =1  be a convex combination from I. The discrete -quasi-ϕ  

arithmetic mean of the points ix  with the coefficients ip  is the number 

( ) ( ) ,;
1

1













ϕϕ= ∑

=

−
ϕ ii

n

i
ii xppxM   (4.1) 

which belongs to I, because the convex combination ( )ii
n
i xp ϕ∑ =1  belongs 

to ( ).Iϕ  If ϕ  is the identity function on I, that is, ,1I=ϕ  then the 

discrete arithmetic-quasi-1I  mean is just the convex combination 

.1 ii
n
i xp∑ =

 

The following is the theorem for right convexity and right concavity 
for quasi-arithmetic means in the discrete case: 

Theorem 4.1 (Discrete case of right convexity and concavity for quasi-
arithmetic means). Let R→/ϕ Iv :,  be strictly monotone continuous 

functions, and ( ).IJ ϕ=  
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If v/  is either convex-ϕ  on ( )
rig

sJϕ  for some ( ) 0Js ∈ϕ  and increasing on I 

or concave-ϕ  on ( )
rig

sJϕ  and decreasing on I, then the inequality 

( ) ( ),;; iivii pxpx /ϕ ≤ MM   (4.2) 

holds for all convex combinations from J satisfying ( ) ( )sxp ii
n
i ϕ≥ϕ∑ =1  if 

and only if the inequality 

( ) ( ),,;,,;, qpyxqpyx v/ϕ ≤ MM   (4.3) 

holds for all binomial convex combinations from J satisfying ( ) ( )yqxp ϕ+ϕ  

( ).sϕ=  

If v/  is either convex-ϕ  on ( )
rig

sJϕ  for some ( ) 0Js ∈ϕ  and decreasing on I 

or concave-ϕ  on ( )
rig

sJϕ  and increasing on I, then the reverse inequalities 

are valid in (4.2) and (4.3). 

Proof. We prove the case in which the function v/  is convex-ϕ  on the 

interval ( )
rig

sJϕ  and increasing on the interval I. Put .1−ϕ/= Dvf  

First, if we apply DRCF-theorem to the function R→Jf :  convex 

on the interval ( ),
rig

sJϕ  then we have 

( ) ( )( ),
11

ii

n

i
ii

n

i
xfpxpf ϕ≤













ϕ ∑∑

==

 

holds for all convex combinations from J satisfying ( ) ( )sxp ii
n
i ϕ≥ϕ∑ =1  if 

and only if 

( ) ( )( ) ( )( ) ( )( ),yqfxpfyqxpf ϕ+ϕ≤ϕ+ϕ  

holds for all binomial convex combinations from J satisfying ( ) ( )yqxp ϕ+ϕ  

( ).sϕ=  
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Second, after applying the increasing function 1−/v  on the above 

inequalities, it follows: 

( ) ( ) ( ) ( ),;;
1

1

1

1
iivii

n

i
ii

n

i
ii pxxvpvxppx /

=

−

=

−
ϕ =













//≤













ϕϕ= ∑∑ MM  

holds for all binomial convex combinations from J satisfying  

( ) ( )sxp ii
n
i ϕ≥ϕ∑ =1  if and only if 

( ) ( ) ( )( ) ( ) ( )( ) ( ),,;,,;, 11 qpyxyqxpvyqxpqpyx v/
−−

ϕ =ϕ+ϕ/≤ϕ+ϕϕ= MM  

holds for all Iyx ∈,  satisfying ( ) ( ) ( ).syqxp ϕ=ϕ+ϕ   

4.2. Integral case 

Let IA ⊆  be a measurable-µ  set with ( ) ,0>µ A  and R→ϕ I:  be 

a strictly monotone continuous function that is integrable-µ  on A. The 

integral arithmetic-quasi-ϕ  mean of the set A with respect to the 

measure µ  is the point 

( ) ( ) ( ) ( ) .1, 1 






 µϕ
µ

ϕ=µ ∫−
ϕ tdtAA

A
M   (4.4) 

If A is the interval, then its arithmetic-quasi-ϕ  mean ( )µϕ ,AM  belongs 

to A because the point ( ) ( ) ( )tdtA A
µϕ

µ ∫1  belongs to ( ).Aϕ  If A is not 

connected, then ( )µϕ ,AM  may be outside of A. If ,1I=ϕ  then the 

integral arithmetic-quasi-1I  mean of A is just the barycenter ( )., µAB  

Theorem for right convexity and right concavity for quasi-arithmetic 
means in the integral case as follows: 

Theorem 4.2 (Integral case of right convexity and concavity for 
quasi-arithmetic means). Let µ  be a continuous finite measure on I that is 
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positive on the intervals. Let R→/ϕ Iv :,  be ntegrablei-µ  strictly 

monotone continuous functions, and ( ).IJ ϕ=  

If v/  is either convex-ϕ  on ( )
rig

sJϕ  for some ( ) 0Js ∈ϕ  and increasing on I 

or concave-ϕ  on ( )
rig

sJϕ  and decreasing on I, then the inequality 

( ) ( ),,, µ≤µ /ϕ BB vMM   (4.5) 

holds for all intervals IB ⊆  satisfying 

( ) ( ) ( ) ( ),1 stdtB B
ϕ≥µϕ

µ ∫  (4.6) 

if and only if the inequality 

( ) ( ),,, µ≤µ /ϕ AA vMM   (4.7) 

holds for all bounded intervals IA ⊆  satisfying 

( ) ( ) ( ) ( ).1 stdtA A
ϕ=µϕ

µ ∫   (4.8) 

If v/  is either convex-ϕ  on ( )
rig

sJϕ  for some ( ) 0Js ∈ϕ  and decreasing on I 

or concave-ϕ  on ( )
rig

sJϕ  and increasing on I, then the reverse inequalities 

are valid in (4.5) and (4.7). 
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